INDIAN STATISTICAL INSTITUTE Semestral Exam Algebra-I 2018-2019

Total marks: 100 Time: 3 hours

Question 1 is compulsory. Answer any 4 questions from the rest.

- 1. State true or false. Justify your answers.
 - (a) \mathbb{Z}_n has even number of generators for n > 2.
 - (b) S_4 is isomorphic to D_{24} .
 - (c) If G is non-abelian then Aut(G) is not cyclic.

(d) Q_8 , the group of quaternions, can be written as a semidirect product of its proper subgroups. (4×5)

- 2. (i) How many cyclic subgroups does Z/15Z have? List them.
 (ii) (a) Find the orders of the elements a = 2ⁿ⁻¹ + 1 and b = 2ⁿ⁻¹ 1 in (Z/2ⁿZ)[×] for n ≥ 3.
 (b) Hence show that (Z/2ⁿZ)[×] is not a cyclic group for n ≥ 3. (8+8+4)
- 3. (a) Let G be a group and H be a subgroup of G. Consider the left regular action of G on the set of all left cosets of H in G. Find the kernel of this action.

(b) Let G be a group and H be a subgroup of finite index in G. Then show that there exists a normal subgroup N of G such that N is of finite index in G and N is contained in H. (8+12)

4. (a) Show that a group of order 56 has a normal Sylow *p*-subgroup for some prime *p* diving its order.
(b) Find all normal subgroups of S_n for all n ≥ 5. (You may use A_n is simple

(b) Find all normal subgroups of S_n for all $n \ge 5$. (You may use A_n is simple for all $n \ge 5$.) (8+12)

- 5. (a)) Define commutator subgroup [G, G] of a group G.
 (b) Let H be a subgroup of G. Then show that H is normal in G and G/H is abelian if and only if [G, G] ⊆ H.
 - (c) Find the commutator subgroups of S_n , for all $n \ge 3$. (2+8+10)
- 6. (a) Classify all groups of order p², where p is a prime.
 (c) Classify all groups of order pq, where p, q are primes, p < q. (8+12)

**** End ****